资源类型

期刊论文 254

会议视频 7

年份

2024 1

2023 40

2022 23

2021 24

2020 20

2019 17

2018 14

2017 12

2016 10

2015 15

2014 16

2013 14

2012 5

2011 6

2010 7

2009 8

2008 6

2007 9

2006 1

2005 2

展开 ︾

关键词

吸附 3

电动汽车 3

2023全球十大工程成就 2

快速充电 2

荷电状态 2

重金属废水 2

2022全球工程前沿 1

7815 1

G蛋白偶联受体 1

NASICON 1

PEDOT:PSS 1

T试剂 1

X射线 1

γ-氨基丁酸A型受体 1

“上限” 1

三相界面 1

下一代 1

中性原子量子计算 1

乳液共聚合 1

展开 ︾

检索范围:

排序: 展示方式:

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

《能源前沿(英文)》   页码 775-781 doi: 10.1007/s11708-023-0902-8

摘要: Aqueous zinc-ion batteries (ZIBs) have great prospects for widespread application in massive scale energy storage. By virtue of the multivalent state, open frame structure and high theoretical specific capacity, vanadium (V)-based compounds are a kind of the most developmental potential cathode materials for ZIBs. However, the slow kinetics caused by low conductivity and the capacity degradation caused by material dissolution still need to be addressed for large-scale applications. Therefore, sodium vanadate Na2V6O16·3H2O (NVO) was chosen as a model material, and was modified with alumina coating through simple mixing and stirring methods. After Al2O3 coating modification, the rate capability and long-cycle stability of Zn//NVO@Al2O3 battery have been significantly improved. The discharge specific capacity of NVO@Al2O3 reach up to 228 mAh/g (at 4 A/g), with a capacity reservation rate of approximately 68% after 1000 cycles, and the Coulombic efficiency (CE) is close to 100%. As a comparison, the capacity reservation rate of Zn//NVO battery is only 27.7%. Its superior electrochemical performance is mainly attributed to the Al2O3 coating layer, which can increase zinc-ion conductivity of the material surface, and to some extent inhibit the dissolution of NVO, making the structure stable and improving the cyclic stability of the material. This paper offers new prospects for the development of cathode coating materials for ZIBs.

关键词: cathodes     aqueous zinc-ion batteries     sodium vanadate     alumina     coating    

Vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coatingfor high performance zinc-ion batteries

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1244-1253 doi: 10.1007/s11705-022-2293-5

摘要: Vanadium oxides as cathode for zinc-ion batteries have attracted much attention because of their high theoretical capacity, flexible layered structure and abundant resources. However, cathodes are susceptible to the collapse of their layered structure and the dissolution of vanadium after repeated long cycles, which worsen their capacities and cycling stabilities. Herein, a synergistic engineering of calcium-ion intercalation and polyaniline coating was developed to achieve the superior electrochemical performance of vanadium pentoxide for zinc-ion batteries. The pre-intercalation of calcium-ion between vanadium pentoxide layers as pillars increase the crystal structure’s stability, while the polyaniline coating on the cathodes improves the conductivity and inhibits the dissolution of vanadium. This synergistic engineering enables that the battery system based-on the polyaniline coated calcium vanadate cathode to deliver a high capacity of 406.4 mAh·g−1 at 1 A·g−1, an ultralong cycle life over 6000 cycles at 10 A·g−1 with 93% capacity retention and high-rate capability. The vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating was verified to effectively improve the electrochemical performance of zinc-ion batteries.

关键词: zinc-ion battery     CaV8O20     polyaniline coating     synergistic engineering     high capacity     long durability    

g-CN-coated MnO hollow nanorod cathode for stable aqueous Zn-ion batteries

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 217-225 doi: 10.1007/s11705-022-2214-7

摘要: Aqueous zinc-ion batteries are attracting considerable attention because of their high safety compared with conventional lithium-ion batteries. Manganese-based materials have been widely developed for zinc-ion batteries cathode owning to their low cost, high security and simple preparation. However, the severe volume expansion and poor stability during charging and discharging limit the further development of manganese-based cathodes. Herein, superior α-MnO2@g-C3N4 was successfully prepared for stable zinc-ion batteries (ZIBs) cathode by introducing g-C3N4 nanosheets. Compared with pure α-MnO2, α-MnO2@g-C3N4 has a specific capacity of 298 mAh·g–1 at 0.1 A·g–1. Even at 1 A·g–1, the α-MnO2@g-C3N4 still retains 100 mAh·g–1 (83.4% retention after 5000 cycles), implying its excellent cycling stability. The α-MnO2@g-C3N4-based cathode has the highest energy density (563 Wh·kg–1) and power energy density (2170 W·kg–1). This work provides new avenues for the development of a wider range of cathode materials for ZIBs.

关键词: α-MnO2 hollow nanorods     g-C3N4     heterojunction     aqueous Zn-ion batteries    

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 226-235 doi: 10.1007/s11705-022-2198-3

摘要: Prussian blue and its analogs are extensively investigated as a cathode for ammonium-ion batteries. However, they often suffer from poor electronic conductivity. Here, we report a Ni2Fe(CN)6/multiwalled carbon nanotube composite electrode material, which is prepared using a simple coprecipitation approach. The obtained material consists of nanoparticles with sizes 30–50 nm and the multiwalled carbon nanotube embedded in it. The existence of multiwalled carbon nanotube ensures that the Ni2Fe(CN)6/multiwalled carbon nanotube composite shows excellent electrochemical performance, achieving a discharge capacity of 55.1 mAh·g–1 at 1 C and 43.2 mAh·g–1 even at 15 C. An increase in the ammonium-ion diffusion coefficient and ionic/electron conductivity based on kinetic investigations accounts for their high performance. Furthermore, detailed ex situ characterizations demonstrate that Ni2Fe(CN)6/multiwalled carbon nanotube composite offers three advantages: negligible lattice expansion during cycling, stable structure, and the reversible redox couple. Therefore, the Ni2Fe(CN)6/multiwalled carbon nanotube composite presents a long cycling life and high rate capacity. Finally, our study reports a desirable material for ammonium-ion batteries and provides a practical approach for improving the electrochemical performance of Prussian blue and its analogs.

关键词: nickel ferrocyanides     NH4+     electrochemistry     Prussian blue     aqueous ammonium ion batteries    

Two-phase early prediction method for remaining useful life of lithium-ion batteries based on a neural

《能源前沿(英文)》 doi: 10.1007/s11708-023-0906-4

摘要: Lithium-ion batteries (LIBs) are widely used in transportation, energy storage, and other fields. The prediction of the remaining useful life (RUL) of lithium batteries not only provides a reference for health management but also serves as a basis for assessing the residual value of the battery. In order to improve the prediction accuracy of the RUL of LIBs, a two-phase RUL early prediction method combining neural network and Gaussian process regression (GPR) is proposed. In the initial phase, the features related to the capacity degradation of LIBs are utilized to train the neural network model, which is used to predict the initial cycle lifetime of 124 LIBs. The Pearson coefficient’s two most significant characteristic factors and the predicted normalized lifetime form a 3D space. The Euclidean distance between the test dataset and each cell in the training dataset and validation dataset is calculated, and the shortest distance is considered to have a similar degradation pattern, which is used to determine the initial Dual Exponential Model (DEM). In the second phase, GPR uses the DEM as the initial parameter to predict each test set’s early RUL (ERUL). By testing four batteries under different working conditions, the RMSE of all capacity estimation is less than 1.2%, and the accuracy percentage (AP) of remaining life prediction is more than 98%. Experiments show that the method does not need human intervention and has high prediction accuracy.

关键词: lithium-ion batteries     RUL prediction     double exponential model     neural network     Gaussian process regression (GPR)    

Review on cellulose paper-based electrodes for sustainable batteries with high energy densities

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1010-1027 doi: 10.1007/s11705-023-2307-y

摘要: Powering the future, while maintaining strong socioeconomic growth and a cleaner environment, is going to be one of the biggest challenges faced by mankind nowadays. Thus, there is a transition from the use of fossil fuels to renewable energy sources. Cellulose, the main component of paper, represents a unique type of bio-based building blocks featuring exciting properties: low-cost, hierarchical fibrous structures, hydrophilicity, biocompatible, mechanical flexibility, and renewability, which make it perfect for use in paper-based sustainable energy storage devices. This review focuses on lithium-ion battery application of celluloses with cellulose at different scales, i.e., cellulose microfibers, and nanocellulose, and highlights the new trends in the field. Recent advances and approaches to construct high mass loading paper electrodes toward high energy density batteries are evaluated and the limitations of paper-based cathodes are discussed. This will stimulate the use of natural resources and thereby the development of renewable electric energy systems based on sustainable technologies with low environmental impacts and carbon footprints.

关键词: cellulose     paper electrodes     Li-ion batteries     high energy density    

Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion

Weiguang Lv, Xiaohong Zheng, Li Li, Hongbin Cao, Yi Zhang, Renjie Chen, Hancheng Ou, Fei Kang, Zhi Sun

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1243-1256 doi: 10.1007/s11705-020-2029-3

摘要: Spent lithium-ion battery recycling has attracted significant attention because of its importance in regard to the environment and resource importance. Traditional hydrometallurgical methods usually leach all valuable metals and subsequently extract target meals to prepare corresponding materials. However, Li recovery in these processes requires lengthy operational procedures, and the recovery efficiency is low. In this research, we demonstrate a method to selectively recover lithium before the leaching of other elements by introducing a hydrothermal treatment. Approximately 90% of Li is leached from high-Ni layered oxide cathode powders, while consuming a nearly stoichiometric amount of hydrogen ions. With this selective recovery of Li, the transition metals remain as solid residue hydroxides or oxides. Furthermore, the extraction of Li is found to be highly dependent on the content of transition metals in the cathode materials. A high leaching selectivity of Li (>98%) and nearly 95% leaching efficiency of Li can be reached with LiNi Co Mn O . In this case, both the energy and material consumption during the proposed Li recovery is significantly decreased compared to traditional methods; furthermore, the proposed method makes full use of H to leach Li . This research is expected to provide new understanding for selectively recovering metal from secondary resources.

关键词: recycling     spent LIBs     selective recovery     hydrothermal treatment    

A review on the development of electrolytes for lithium-based batteries for low temperature applications

《能源前沿(英文)》 2023年 第17卷 第1期   页码 43-71 doi: 10.1007/s11708-022-0853-5

摘要: The aerospace industry relies heavily on lithium-ion batteries in instrumentation such as satellites and land rovers. This equipment is exposed to extremely low temperatures in space or on the Martian surface. The extremely low temperatures affect the discharge characteristics of the battery and decrease its available working capacity. Various solvents, cosolvents, additives, and salts have been researched to fine tune the conductivity, solvation, and solid-electrolyte interface forming properties of the electrolytes. Several different resistive phenomena have been investigated to precisely determine the most limiting steps during charge and discharge at low temperatures. Longer mission lifespans as well as self-reliance on the chemistry are now highly desirable to allow low temperature performance rather than rely on external heating components. As Martian rovers are equipped with greater instrumentation and demands for greater energy storage rise, new materials also need to be adopted involving next generation lithium-ion chemistry to increase available capacity. With these objectives in mind, tailoring of the electrolyte with higher-capacity materials such as lithium metal and silicon anodes at low temperatures is of high priority. This review paper highlights the progression of electrolyte research for low temperature performance of lithium-ion batteries over the previous several decades.

关键词: electrolyte     lithium-ion     low temperature     aerospace     solid-electrolyte interface    

Promoting Si-graphite composite anodes with SWCNT additives for half and NCM811 full lithium ion batteries

Jingning SHAN, Xiaofang YANG, Chao YAN, Yiguang JU, Lin CHEN, Fang ZHAO

《能源前沿(英文)》 2019年 第13卷 第4期   页码 626-635 doi: 10.1007/s11708-019-0650-y

摘要: Single wall carbon nanotube (SWCNT) additives were formulated into µm-Si-graphite composite electrodes and tested in both half cells and full cells with high nickel cathodes. The critical role of small amount of SWCNT addition (0.2 wt%) was found for significantly improving delithiation capacity, first cycle coulombic efficiency (FCE), and capacity retention. Particularly, Si (10 wt%)-graphite electrode exhibits 560 mAh/g delithiation capacity and 92% FCE at 0.2 C during the first charge-discharge cycle, and 91% capacity retention after 50 cycles (0.5 C) in a half cell. Scanning electron microscope (SEM) was used to illustrate the electrode morphology, compositions and promoting function of the SWCNT additives. In addition, full cells assembled with high nickel-NCM811 cathodes and µm-Si-graphite composite anodes were evaluated for the consistence between half and full cell performance, and the consideration for potential commercial application. Finally, criteria to assess Si-containing anodes are proposed and discussed from an industrial perspective.

关键词: lithium-ion battery     Si anode     Si-graphite composite     single wall carbon nanotube (SWCNT)     NCM811    

Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to

Zhouyu ZHANG, Hao CHEN, Zhenglin HU, Shoubin ZHOU, Lan ZHANG, Jiayan LUO

《能源前沿(英文)》 2022年 第16卷 第5期   页码 706-733 doi: 10.1007/s11708-022-0833-9

摘要: Solid-state electrolytes (SSEs) can address the safety issue of organic electrolyte in rechargeable lithium batteries. Unfortunately, neither polymer nor ceramic SSEs used alone can meet the demand although great progress has been made in the past few years. Composite solid electrolytes (CSEs) composed of flexible polymers and brittle but more conducting ceramics can take advantage of the individual system for solid-state lithium metal batteries (SSLMBs). CSEs can be largely divided into two categories by the mass fraction of the components: “polymer rich” (PR) and “ceramic rich” (CR) systems with different internal structures and electrochemical properties. This review provides a comprehensive and in-depth understanding of recent advances and limitations of both PR and CR electrolytes, with a special focus on the ion conduction path based on polymer-ceramic interaction mechanisms and structural designs of ceramic fillers/frameworks. In addition, it highlights the PR and CR which bring the leverage between the electrochemical property and the mechanical property. Moreover, it further prospects the possible route for future development of CSEs according to their rational design, which is expected to accelerate the practical application of SSLMBs.

关键词: composite solid electrolytes     active filler/framework     ion conduction path     interphase compatibility     multilayer design    

A modified pulse charging method for lithium-ion batteries by considering stress evolution, charging

Yanfei ZHAO, Bo LU, Yicheng SONG, Junqian ZHANG

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 294-302 doi: 10.1007/s11709-018-0460-z

摘要: The stress evolution, total charging time and capacity utilization of pulse charging (PC) method are investigated in this paper. It is found that compared to the conventional constant current (CC) charging method, the PC method can accelerate the charging process but will inevitably cause an increase in stress and a decrease in capacity. The charging speed for PC method can be estimated by the mean current. By introducing stress control, a modified PC method called the PCCC method, which starts with a PC operation followed by a CC operation, is proposed. The PCCC method not only can accelerate charging process but also can avoid the stress raising and capacity loss occurring in the PC method. Furthermore, the optimal pulsed current density and switch time in the PCCC method is also discussed.

关键词: fast charging method     pulse charging     stress evolution     charging time     capacity utilization    

Lithium-ion modified cellulose as a water-soluble binder for Li-O battery

《能源前沿(英文)》 2022年 第16卷 第3期   页码 502-508 doi: 10.1007/s11708-021-0750-3

摘要: An environment-friendly, water-soluble, and cellulose based binder (lithium carboxymethyl cellulose, CMC-Li) was successfully synthesized by using Li+ to replace Na+ in the commercial sodium carboxymethyl cellulose (CMC-Na). Li-O2 batteries based on the CMC-Li binder present enhanced discharge specific capacities (11151 mA·h/g at 100 mA/g) and a superior cycling stability (100 cycles at 200 mA/g) compared with those based on the CMC-Na binder. The enhanced performance may originate from the electrochemical stability of the CMC-Li binder and the ion-conductive nature of CMC-Li, which promotes the diffusion of Li+ in the cathode and consequently retards the increase of charge transfer resistance of the cathode during cycling. The results show that the water-soluble CMC-Li binder can be a green substitute for poly(vinylidene fluoride) (PVDF) binder based on organic solvent in the lithium oxygen batteries (LOBs).

关键词: cellulose     binder     specific capacity     cyclabi- lity     lithium-oxygen batteries    

Reduced texaphyrin: A ratiometric optical sensor for heavy metals in aqueous solution

Harrison D. Root, Gregory Thiabaud, Jonathan L. Sessler

《化学科学与工程前沿(英文)》 2020年 第14卷 第1期   页码 19-27 doi: 10.1007/s11705-019-1888-y

摘要: We report here a water-soluble metal cation sensor system based on the as-prepared or reduced form of an expanded porphyrin, texaphyrin. Upon metal complexation, a change in the redox state of the ligand occurs that is accompanied by a color change from red to green. Although long employed for synthesis in organic media, we have now found that this complexation-driven redox behavior may be used to achieve the naked eye detectable colorimetric sensing of several number of less-common metal ions in aqueous media. Exposure to In(III), Hg(II), Cd(II), Mn(II), Bi(III), Co(II), and Pb(II) cations leads to a colorimetric response within 10 min. This process is selective for Hg(II) under conditions of competitive analysis. Furthermore, among the subset of response-producing cations, In(III) proved unique in giving rise to a ratiometric change in the ligand-based fluorescence features, including an overall increase in intensity. The cation selectivity observed in aqueous media stands in contrast to what is seen in organic solvents, where a wide range of texaphyrin metal complexes may be prepared. The formation of metal cation complexes under the present aqueous conditions was confirmed by reversed phase high-performance liquid chromatography, ultra-violet-visible absorption and fluorescence spectroscopies, and high-resolution mass spectrometry.

关键词: texaphyrin     fluorescent sensor     ion-sensing     indium     mercury    

Fabrication of layered structure VS anchor in 3D graphene aerogels as a new cathode material for lithium ionbatteries

《能源前沿(英文)》 2019年 第13卷 第3期   页码 597-602 doi: doi:10.1007/s11708-018-0576-9

摘要: VS4 has gained more and more attention for its high theoretical capacity (449 mAh/g with 3e transfer) in lithium ion batteries (LIBs). Herein, a layered structure VS4 anchored in graphene aerogels is prepared and first reported as cathode material for LIBs. VS4@GAs composite exhibits an exceptional high initial reversible capacity (511 mAh/g), an excellent high-rate capability (191 mAh/g at the 5 C), and an excellent cyclic stability (239 mAh/g after 15 cycles).

关键词: VS4     graphene aerogels     cathode     lithium storage    

钠离子电池工程化——机遇与挑战 Review

赵丽娜, 张腾, 李巍, 李涛, 张隆, 张晓光, 汪志义

《工程(英文)》 2023年 第24卷 第5期   页码 172-183 doi: 10.1016/j.eng.2021.08.032

摘要:

当前,在应对全球能源枯竭与环境恶化之际,可持续且环境友好的可再生能源正迎来重要的发展机遇。以二次电池为代表的电能存储(EES)技术,可实现绿色新能源安全且经济有效的存储和转化,被视为可平抑可再生能源间歇性并实现稳定并网输入的最佳解决方案。钠离子电池(SIB),受益于钠资源的丰富
性及低成本,是下一代大规模电化学存储系统最具应用前景的选择之一。本文详细讨论了锂离子电池(LIB)和钠离子电池在不同应用场景下的主要区别,并描述了当前对钠离子电池的理解。通过比较锂离子电池、铅酸电池(LAB)和钠离子电池之间的技术发展情况,进一步揭示钠离子电池的优势。本文以基于钠离子电池技术所取得的商业化成就为文章亮点,重点介绍了五家钠离子电池企业和相应的钠离子电池产品,以及各自的钠离子电池化学与技术。最后,讨论了下一代钠离子电池商业化的前景与挑战。

关键词: 电化学储能     钠离子电池     商业化     下一代    

标题 作者 时间 类型 操作

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

期刊论文

Vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coatingfor high performance zinc-ion batteries

期刊论文

g-CN-coated MnO hollow nanorod cathode for stable aqueous Zn-ion batteries

期刊论文

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

期刊论文

Two-phase early prediction method for remaining useful life of lithium-ion batteries based on a neural

期刊论文

Review on cellulose paper-based electrodes for sustainable batteries with high energy densities

期刊论文

Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion

Weiguang Lv, Xiaohong Zheng, Li Li, Hongbin Cao, Yi Zhang, Renjie Chen, Hancheng Ou, Fei Kang, Zhi Sun

期刊论文

A review on the development of electrolytes for lithium-based batteries for low temperature applications

期刊论文

Promoting Si-graphite composite anodes with SWCNT additives for half and NCM811 full lithium ion batteries

Jingning SHAN, Xiaofang YANG, Chao YAN, Yiguang JU, Lin CHEN, Fang ZHAO

期刊论文

Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to

Zhouyu ZHANG, Hao CHEN, Zhenglin HU, Shoubin ZHOU, Lan ZHANG, Jiayan LUO

期刊论文

A modified pulse charging method for lithium-ion batteries by considering stress evolution, charging

Yanfei ZHAO, Bo LU, Yicheng SONG, Junqian ZHANG

期刊论文

Lithium-ion modified cellulose as a water-soluble binder for Li-O battery

期刊论文

Reduced texaphyrin: A ratiometric optical sensor for heavy metals in aqueous solution

Harrison D. Root, Gregory Thiabaud, Jonathan L. Sessler

期刊论文

Fabrication of layered structure VS anchor in 3D graphene aerogels as a new cathode material for lithium ionbatteries

期刊论文

钠离子电池工程化——机遇与挑战

赵丽娜, 张腾, 李巍, 李涛, 张隆, 张晓光, 汪志义

期刊论文